Sains Malaysiana 54(2)(2025): 361-375
http://doi.org/10.17576/jsm-2025-5402-04
Cirian Mekanik Terpilih dan Larutresap Bata Geopolimer berasaskan Amang Lombong Emas dengan Bahan Tambah Sisa Plastik Mikro
(Some Selected Mechanical Properties and
Leaching Test of Geopolymer Brick based on Gold Mine Tailings with Added
Material of Micro Plastic Waste)
ZULFAHMI ALI RAHMAN*, SUHAIMI MOHAMED SETH, WAN MOHD RAZI IDRIS
& TUKIMAT LIHAN
Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 7 May
2024/Accepted: 3 October 2024
Abstrak
Penggunaan amang lombong emas (ALE) dan sisa plastik mikro (SPM) mampu mengurangkan kesan masalah lambakan sisa. Penghasilan bata geopolimer (BGP) menggunakan sisa industri sebagai bahan pengikat tanpa melibatkan pembakaran berpotensi sebagai alternatif kepada bata konvensional dan simen portland biasa (OPC). Kajian ini bertujuan melihat pengaruh penambahan SPM terhadap sifat mekanik bata geopolimer (BGP) yang dibangunkan daripada sisa lombong emas. Ujian larutresap turut dilakukan terhadap bata geopolimer bagi melihat penggunaan sisa ini terhadap pelepasan beberapa logam berat terpilih. Sampel bata geopolimer dihasilkan daripada campuran ALE (prakursor) dan SPM sebagai bahan tambah di dalam persekitaran beralkali tinggi, NaOH (pengaktif alkali). Tiga set sampel BGP dihasilkan terdiri daripada 100% ALE 0% SPM
(SPM0), 95% ALE 5% SPM (SPM5) dan 90% ALE 10% SPM (SPM10). Berdasarkan hasil analisis XRD, didapati ALE mengandungi silikon dioksida, SiO2 (68.4%) dan aluminium dioksida Al2O3 (17.7%). Hasil analisis pengecutan linear mendapati isi padu sampel BGP semakin menyusut dengan pertambahan SPM dengan nilai pengecutan maksimum bagi SPM0 adalah 9.35% dan nilai tersebut terus menyusut kepada 7.18% dan 5.59% bagi SPM5 dan SPM10. Nilai serapan air menunjukkan peningkatan dengan pertambahan kandungan SPM iaitu daripada 1.16% (SPM0), 4.57% (SPM5) dan 4.92% (SPM10). Ini dikaitkan dengan kehadiran sempadan berjarak di antara zarah SPM dan bahan geopolimer. Nilai serapan air
yang diperoleh adalah memenuhi syarat bagi bata kejuruteraan Kelas A (4.5%) dan Kelas B (7.0%). Nilai kekuatan mampatan pula menunjukkan penyusutan dengan peningkatan kandungan SPM berjulat antara 10.17 MPa dan
38.50 MPa. Julat kekuatan yang didapati adalah melepasi nilai piawaian MS 76:1972 (2.8 MPa - 5.2 MPa). Ujian larut resap mendapati logam berat yang dibebaskan oleh bata geopolimer (BGP) adalah masih rendah berbanding piawaian USEPA.
Kata kunci: Bata; geopolimer; kekuatan mampatan; serapan air; sisa plastik mikro
Abstract
The
application of gold mine tailing (ALE) and micro plastic waste (SPM) can
minimise the impact of waste dumping problems. The production of geopolymer
bricks (BGP) using industrial waste as binding material without involving
combustion is a potential alternative to conventional bricks and Ordinary
Portland Cement (OPC). The aim of this study was to examine the effect of
microplastic (SPM) addition on the mechanical characteristics of geopolymer
brick developed from gold mine tailing (ALE). Leaching test was also performed
on geopolymer brick in order to investigate the release of certain heavy metals
as a result of using these wastes. Geopolymer brick samples were made from ALE
(precursor) and SPM as an additive material in a high alkaline medium (alkali activator).
Three sets of BGP samples were produced comprised 100% ALE with 0% SPM (SPM0),
95% ALE with 5% SPM (SPM5) and 90% ALE with 10% SPM (SPM10). Based on the XRD
analysis, ALE composed primarily of silicon dioxide, SiO2 (68.4%)
and aluminium dioxide Al2O3 (17.7%) which are the main
elements needed for development of geopolymer bricks. The result of linear
shrinkage analysist found that the volume of the BGP samples decreased as SPM
increased, with the maximum shrinkage value for SPM0 of 9.35% and continuing to
decrease to 7.18% and 5.59% for SPM5 and SPM10. The water absorption value
increased with increasing of SPM content, from 1.16% (SPM0) to 4.57% (SPM5) and
4.92% (SPM10). This is a result of the presence of a gap boundary between the
SPM particles and the geopolymer substance. The obtained water absorption value
satisfies the Class A (4.5%) and Class B (7.0%) engineering brick criteria. The
compressive strength value decreased with increasing SPM content, ranging
between 10.17 MPa and 38.50 MPa. The strength range observed exceeds the MS
76:1972 recommended value (2.8 MPa - 5.2 MPa). Leaching test showed that heavy
metals produced by BGP bricks were still below USEPA requirements. The acid
resistance test of the BGP sample was found to be lower (30.32%) than mortar
(39.0%) and conventional Portland cement (56.6%). This study demonstrated that
ALE waste has the potential to be used as an alternative material in the
development of geopolymer bricks; however, some mechanical factors, such as the
amount and type of microplastic waste, as well as acid resistance, must be
further optimized.
Keywords: Brick;
compressive strength; geopolymer; micro plastic waste; water absorption
REFERENCES
Abdul Kadir, A. & Mohajerani,
A. 2008. Physico-mechanical properties and leachate
analysis of clay fired bricks incorporated with cigarette butts. Proceedings
of the International Conference on Environment, Penang, Malaysia. hlm. 15-17.
Abidi Ramly. 2007. Kekuatan mampatan dan kebolehserapan bata tanpa bakar. Tesis Ijazah Sarjana Muda. Fakulti Kejuruteraan Awam, Universiti Teknologi Malaysia (tidak diterbitkan).
Adajar, M.A., Beltran, H.E., Calicdan,
C.A., Duran, T.R., Ramos, C.D. & Galupino, J.
2021. Assessment of gold mine tailings as based geopolymer binder in concrete. DLSU
Research Congress 2021, De La Salle University, Manila, July 7-9, 2021.
Adler, R. & Rascher,
J. 2007. A Strategy for the Management of Acid Mine Drainage from Gold Mines
in Gauteng. CSIR Report No. CSIR/NRE/PW/ER/2007/0053/C. Pretoria: CSIR.
Ahmari, S. & Zhang, L. 2013. Durability and
leaching behavior of mine tailings-based geopolymer
bricks. Construction and Building Materials 44: 743-750.
http://doi.org/10.1016/j.conbuildmat.2013.03.075
Ahmari, S. & Zhang, L. 2012. Production of
eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials 29: 323-331. doi:10.1016/j.conbuildmat.2011.10.048
Ajam, L., Ben Ouezdou,
M., Felfoul, H.S. & Mensi,
R.E. 2009. Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Construction
and Building Materials 23(10): 3240-3247.
https://doi.org/10.1016/j.conbuildmat.2009.05.009
Akabzaa, T.M. 2000. Boom and Dislocation: The
Environmental and Social Impacts of Mining in the Wassa West District of Ghana. Third World Network-Africa.
Ali Rahman, Z., Nazarah,
H., Idris, W.M.R. & Lihan, T. 2023. Mechanical
characteristics of developed brick from drinking water sludge under different
firing temperatures and rice husk ash contents. Sains Malaysiana 52(7): 2115-2126.
http://doi.org/10.17576/jsm-2023-5207-17
Ali Rahman, Z., Mohd Suhaimi, A.S., Idris, W.M.R. & Lihan, T. 2022. Developing and mechanical properties of low
fired and geopolymer bricks from drinking water sludge with different contents
of added fly ash. Sains Malaysiana 51(12): 4071-4085.
Ali Rahman, Z., Othman, A.M., Idris, W.M.R.
& Lihan, T. 2021. Kesan suhu dan bahan tambah abu terbang terhadap pencirian mekanik bata daripada sisa rawatan air mentah. Sains Malaysiana 50(6): 1563-1575. http://doi.org/10.17576/jsm-2021-5006-05
Aragaw, T.A. 2021. Microplastic pollution in
African countries’ water systems: A review on findings, applied methods,
characteristics, impacts, and managements. SN Appl. Sci. 3: 629.
doi:10.1007/s42452-021-04619-z
Aseniero, J.P.J., Opiso,
E.M., Banda, M.H.T. & Tabelin, C.B. 2018.
Potential utilization of artisanal gold‑mine tailings as geopolymeric source material: Preliminary investigation. SN
Applied Sciences 1: 35. doi.org/10.1007/s42452-018-0045-4
Asoy, A.N., Besagas,
R.L., Del Rosario, R.M. & Dael, N.T. 2017. Physico-chemical characteristics of tailings from Gango gold mine. J. Chem. Bio. Phy.
Sci. Sec. D 7(2):
201-207.
Benahsina, A., El Haloui,
Y., Taha, Y., Elomari, M. & Bennouna,
M.A. 2022. Substitution of natural clay by Moroccan solid mining wastes to
manufacture fired bricks. Materials Today: Proceedings 58: 1324-1330.
Benson, C.H., Zhai,
H. & Wang, X. 1994. Estimating hydraulic conductivity of compacted clay
liners. Journal of Geotechnical Engineering 120(2): 366-387.
https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(366)
Bhuyan, M.S. 2022. Effects of microplastic on
fish and in human health. Frontier in Environmental Science 10: 827289. doi: 10.3389/fenvs.2022.827289
Blight, G. & Fourie, A. 2005.
Catastrophe revisited-disastrous flow failures of mine and municipal solid
waste. Geotech. Geol. Eng. 23: 219-248. doi:
10.1007/s10706-004-7067-y
British Standard (BS). 1990. 1377-2. Methods
of Test for Soils for Civil Engineering Purposes. Classification Tests. London: British Standard.
Caballero, E., Sӑnchez,
W. & Ríos, C.A. 2014. Synthesis of geopolymers from alkaline activation of
gold mining wastes. Ingeniería y competitividad 16(1): 317-330.
Carter, D., Mortland,
M. & Kemper, W. 1986. Specific surface. Methods of Soil Analysis: Part 1
Physical and Mineralogical Methods 5: 413-423.
Castillo, H., Collado,
H., Droguett, T., Sánchez, S., Vesely,
M., Garrido, P. & Palma, S. 2021. Factors affecting the compressive strength
of geopolymers: A review. Minerals 11(12): 1317.
Chan, C.M. 2023. BET Physisorption
Analyzer Installation Operational Training: Micromeritics Tristar II Plus,
Micromeritics.
Chen, M-Z., Lin, J-T., Wu, S-P. & Liu,
C-H. 2011. Utilization of recycled brick powder as alternative filler in
asphalt mixture. Construction and Building Materials 25(4): 1532-1536.
Davidovits, J. 2015. Polymers and geopolymers. Geopolymer
Chemistry and Applications. 4th ed. Saint Quentin: Institut Géopolymère.
Deng, K., Yin, P., Liu, X., Tang, Q. &
Qu, R. 2014. Modeling analysis and optimization of
adsorption parameters of Au(III) using low-cost
agricultural residual buckwheat hulls. J. Ind. Eng. Chem. 20(4):
2428-2438. http://refhub.elsevier.com/S0950-0618(21)00415-3/h0010
Doğan-Sağlamtimur, N., Bilgil, A.
& Öztürk, B. 2018. Reusability of ashes for the
building sector to strengthen the sustainability of waste management. Dlm. Handbook of Research on Supply Chain Management for
Sustainable Development, disunting oleh Akküçük,
U. IGI Global Publishing. hlm. 265-281.
Duxson, P., Mallicoat,
S.W., Lukey, G.C., Kriven,
W.M. & Van Deventer, J.S. 2007. The effect of alkali and Si/Al ratio on the
development of mechanical properties of metakaolin-based geopolymers. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 292(1): 8-20.
Falayi, T. 2019. Effect of potassium silicate and
aluminate on the stabilisation of gold mine tailings. Proceedings of the
Institution of Civil Engineers - Waste and Resource Management 172(2):
56-63.
Fashola, M.O., Ngole-Jeme,
V.M. & Bablola, O.O. 2016. Heavy metal pollution
from gold mines: Environmental effects and bacterial strategies for resistance. International J. Environmental Research and Public Health 13(11):
1047. https://doi.org/10.3390%2Fijerph13111047
Fungaro, D.A. & da Silva Reis, T.V. 2014. Use
of sugarcane straw ash for zeolite synthesis. International Journal of
Energy and Environment 5(5): 559-566.
Gado, R.A., Hebda, M., Lach,
M. & Mikula, J. 2020. Alkali activation of waste
clay bricks: Influence of the silica modulus, SiO2/Na2O,
H2O/Na2O molar ratio, and liquid/soilid ratio. Materials 13: 383. https://doi10.3390/ma13020383
Gui, Y., Zhang, Q., Qin, X. & Wang, J.
2021. Influence of organic matter content on engineering properties of clays. Advances
in Civil Engineering 2021: 1-11.
Idrees, M., Akhbar,
A., Saeed, F., Gull, M. & Eldin, S.M. 2023.
Sustainable production of low-shrinkage fired clay bricks by utilizing waste
plastic dust. Alexandria Engineering Journal 69: 405-416. https://doi.org/10.1016/j.aej.2023.01.040
Ince, C. 2019. Reusing gold-mine tailings
in cement mortars: Mechanical properties and socio-economic developments for
the Lefke-Xeros area of Cypru. Journal of Cleaner Production 238: 117871. https://doi.org/10.1016/j.jclepro.2019.117871
Indian Standard (IS). 1992. IS 1077:1992. Common
Burnt Clay Building Bricks-Specifications. New Delhi: BIS:1992 [Fifth
Revision]
Jabatan Perangkaan Malaysia 2022. Indeks kos bahan binaan meningkat di antara 4.4 peratus dan 18.5 peratus pada Jun 2022. Berita Harian online. https://beritaharian.my/indeks-kos-bahan-binaan-meningkat-di-antara-4-4-peratus-dan-18-5-peratus-pada-jun-2022/
Kementerian Air dan Sumber Asli 2021. Malaysia Plastics Sustainability
Roadmap 2021-2030. Putrajaya: Ministry of Environment & Water (KASA).
Khale, D. & Chaudhary, R. 2007. Mechanism of geopolymerization and factors influencing its
development: A review. Journal of Materials Science 42(3): 729-746.
Leong, H.Y., Ong, D.E.L., Sanjayan, J.G. & Ali Nazari. 2016. The effect of
different Na2O and K2O ratios of alkali activator on
compressive strength of fly ash based-geopolymer. Construct. Build. Mater.
106: 500-511.
Loaiza, J.V., Franco, J.A., Vargas, L.S.,
Gongora, G.A. & Dianderas, A.P.F. 2020. Design
and implementation of an alternative process for the manufacture of bricks from
gold mine tailings. Ingeniare. Revista Chilena De Ingeniería 28(2): 268-276.
Lottermoser, B.G. 2010. Mine Wastes:
Characterization, Treatment and Environmental Impacts. Berlin: Springer.
https://doi.org/10.1007/978-3-642-12419-8
Lu, Y., Li, G., Liu, W., Yuan, H. &
Xiao, D. 2018. The application of microwave digestion in decomposing some
refractory ore sample with solid fusion agent. Talanta 186: 538-544. http://refhub.elsevier.com/S0950-0618(21)00415-3/h0010
Lu, Z. & Cai, M. 2012. Disposal methods
on solid wastes from mines in transition from open-pit to underground mining. Procedia
Environmental Sciences 16: 715-721.
Mabroum, S., Moukannaa,
S., Machi, A.E., Taha, Y., Benzaazouna,
M. & Hakkou, R. 2021. Mine wastes based
geopolymers: A critical review. Cleaner Engineering and Technology 1:
100014.
Malaysian Standard (MS). 76. 1972. Specification
for Bricks and Blocks of Fired Brick Earth, Clay or Shale (Selangor: Malaysian
Standard). hlm. 1-74.
Mashifana, T., Sithole, N. & Mkhonto,
E. 2019. Stabilization of gold mine tailings: The effect of hydrated lime on
the unconfined compressive strength. IOP Conference Series: Materials
Science and Engineering. hlm. 012045.
Nehdi, M. & Tariq, A. 2007. Stabilization of sulphidic mine tailings for prevention of metal
release and acid drainage using cementitious materials: A review. Journal of
Environ. Eng. Sci. 6: 423-436.
Ngo, S.H. 2020. Evaluation of the
engineering properties of fly ash-based geopolymer bricks. International
Journal of Civil Engineering and Technology 11(2): 43-51.
Oades, J.M. 1984. Soil organic matter and
structural stability: Mechanisms and implications for management. Plant and
Soil 76: 319-337.
Özbayrak, A., Kucukgoncu,
H., Aslanbay, H.H., Aslanbay,
Y.G. & Atas, O. 2023. Comprehensive experimental
analysis of the effects of elevated temperatures in geopolymer concretes with
variable alkali activator ratios. J. Build. Eng. 68: 106108.
Pan, Z., Zhang, C., Li, Y. & Yang, C.
2022. Solidification/stabilization of gold ore tailings powder using
sustainable waste-based composite geopolymer. Engineering Geology 309:
106793.
Parthasarathi, N., Ramalinga Reddy, B.M. & Satyanarayan, K.S. 2016. Effect on workability of concrete
due to partial replacement of natural sand with gold mine tailing. Indian
Journal of Science & Technology 9(35): 1-4. https://doi.org/10.17485/ijst/2016/v9i35/99052
PlasticsEurope. 2019. Plastics e the Facts 2019.
https://www.
plasticseurope.org/en/resources/publications/1804-plastics-facts-2019
Rao, F. & Liu, Q. 2015. Geopolymerization and its potential application in mine tailings consolidation: A review. An International
Journal 36(6): 399-409. doi:10.1080/08827508.2015.1055625
Rassam, D.W. & Williams, D.J. 1999.
Engineering properties of gold tailings. International Journal of Surface
Mining, Reclamation and Environment 13(3): 91-96.
Raut, S., Ralegaonkar,
R. & Mandavgane, S. 2011. Development of
sustainable construction material using industrial and agricultural solid
waste: A review of waste-create bricks. Construction and Building Materials 25(10):
4037-4042.
Raza Ali Khan, Mohd Shahir Liew & Zulkipli Ghazali. 2014. Malaysian
construction sector and Malaysia vision 2020: Developed nation status. Procedia
- Social and Behavioral Sciences 109: 507-513.
Rouquerol, J., Rouquerol,
F., Llewellyn, P., Maurin, G. & Sing, K. 2013. Adsorption
by Powders and Porous Solids: Principles, Methodology and Applications. Massachusetts:
Academic Press.
Roy, S., Adhikari & Gupta, R.M. 2007.
Use of gold mill tailing in making bricks: A feasibility study. Waste
Management Research 25: 474-482.
Suhendro, B. 2014. Toward green concrete for better
sustainable environment. Procedia Engineering 95: 305-320.
Tian, X., Xu, W., Song, S., Rao, F. &
Xia, L. 2020. Effects of curing temperature on the compressive strength and
microstructure of copper tailing-based geopolymers. Chemosphere 253:
126754. https://doi.org/10.1016/j.chemosphere.2020.126754
Townsend, T.G., Solo-Gabriele, H., Tolaymat, T. & Stook, K.
2003. Impact of chromated copper arsenate (CCA) in wood mulch. Science of
The Total Environment 309(1-3): 173-185.
US Environmental Protection Agency (USEPA).
1996. Hazardous Waste Characteristics Scoping Study. US Environmental
Protection Agency.
Uvarajan, T., Paran Gani, Ng, C. C. & Nur Hanis Zulkernain. 2021. Reusing plastic waste in the production
of bricks and paving blocks: A review. European Journal of Environmental and
Civil Engineering 1-34.
Verma, N.K., Rao, M.C. & Kumar, S.
2022. Effect of curing regime on compressive strength of geopolymer concrete. IOP
Conf. Series: Earth and Environmental Science 982: 012032.
https://doi.org/10.1088/1755-1315/982/1/012031
Wei, Z., Zhao, J., Wang, W., Yang, Y.,
Zhuang, S., Lu, T. & Hou, Z. 2021. Utilizing gold mine tailings to produce
sintered bricks. Construction and Building Materials 282: 122655.
Widojoko, L., Hardjasaputra,
H. & Susilowati. 2014. Study of gold mine tailings
utilization as fine aggregate material for producing shotcrete based on concept
of green technology. 3rd International Conference of Engineering &
Technology Development (ICETD), Faculty of Computer Science, Bandar Lampung
University.
Xie, J. & Kayali,
O. 2014. Effect of initial water content and curing moisture conditions on the
development of fly ash-based geopolymers in heat and ambient temperature. Constr.
Build. Mater. 67: 20-28.
Yadav, A., Chandra, A. & Singh, S.
2022. Study on application of waste plastic in the construction industry. Materials
Today: Proceedings 64: 1455-1458.
Yang, C., Cui, C., Qin, J. & Cui, X.
2014. Characteristics of the fired bricks with low-silicon iron tailings. Construction
and Building Materials 70: 36-42. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.075
Yao, X., Zhang, Z., Zhu, H. & Chen, Y.
2009. Geopolymerization process of alkali– metakaolinite characterized by isothermal calorimetry. Thermochimica Acta 493(1): 49-54.
Yener, E. & Karaaslan,
C. 2020. Curing time and temperature effect on the resistance to wet-dry cycles
of fly ash added pumice based geopolymer. Cement Based Composites 1(2):
19-25.
Yunsheng, Z., Wei, S., Qianli,
C. & Lin, C. 2007. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous
Materials 143(1-2): 206-213.
*Corresponding author; email:
zarah1970@ukm.edu.my