Sains Malaysiana 54(2)(2025): 361-375

http://doi.org/10.17576/jsm-2025-5402-04

 

Cirian Mekanik Terpilih dan Larutresap Bata Geopolimer berasaskan Amang Lombong Emas dengan Bahan Tambah Sisa Plastik Mikro

(Some Selected Mechanical Properties and Leaching Test of Geopolymer Brick based on Gold Mine Tailings with Added Material of Micro Plastic Waste)

 

ZULFAHMI ALI RAHMAN*, SUHAIMI MOHAMED SETH,  WAN MOHD RAZI IDRIS & TUKIMAT LIHAN

 

Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 7 May 2024/Accepted: 3 October 2024

 

Abstrak

Penggunaan amang lombong emas (ALE) dan sisa plastik mikro (SPM) mampu mengurangkan kesan masalah lambakan sisa. Penghasilan bata geopolimer (BGP) menggunakan sisa industri sebagai bahan  pengikat tanpa melibatkan pembakaran berpotensi sebagai alternatif kepada bata konvensional dan simen portland biasa (OPC). Kajian ini bertujuan melihat pengaruh penambahan SPM terhadap sifat mekanik bata geopolimer (BGP) yang dibangunkan daripada sisa lombong emas. Ujian larutresap turut dilakukan terhadap bata geopolimer bagi melihat penggunaan sisa ini terhadap pelepasan beberapa logam berat terpilih. Sampel bata geopolimer dihasilkan daripada campuran ALE (prakursor) dan SPM sebagai bahan tambah di dalam persekitaran beralkali tinggi, NaOH (pengaktif alkali). Tiga set sampel BGP dihasilkan terdiri daripada 100% ALE 0% SPM (SPM0), 95% ALE 5% SPM (SPM5) dan 90% ALE 10% SPM (SPM10). Berdasarkan hasil analisis XRD, didapati ALE mengandungi silikon dioksida, SiO2 (68.4%) dan aluminium dioksida Al2O3 (17.7%). Hasil analisis pengecutan linear mendapati isi padu sampel BGP semakin menyusut dengan pertambahan SPM dengan nilai pengecutan maksimum bagi SPM0 adalah 9.35% dan nilai tersebut terus menyusut kepada 7.18% dan 5.59% bagi SPM5 dan SPM10. Nilai serapan air menunjukkan peningkatan dengan pertambahan kandungan SPM iaitu daripada 1.16% (SPM0), 4.57% (SPM5) dan 4.92% (SPM10). Ini dikaitkan dengan kehadiran sempadan berjarak di antara zarah SPM dan bahan geopolimer. Nilai serapan air yang diperoleh adalah memenuhi syarat bagi bata kejuruteraan Kelas A (4.5%) dan Kelas B (7.0%). Nilai kekuatan mampatan pula menunjukkan penyusutan dengan peningkatan kandungan SPM berjulat antara 10.17 MPa dan 38.50 MPa. Julat kekuatan yang didapati adalah melepasi nilai piawaian MS 76:1972 (2.8 MPa - 5.2 MPa). Ujian larut resap mendapati logam berat yang dibebaskan oleh bata geopolimer (BGP) adalah masih rendah berbanding piawaian USEPA.

 

Kata kunci: Bata; geopolimer; kekuatan mampatan; serapan air; sisa plastik mikro

 

Abstract

The application of gold mine tailing (ALE) and micro plastic waste (SPM) can minimise the impact of waste dumping problems. The production of geopolymer bricks (BGP) using industrial waste as binding material without involving combustion is a potential alternative to conventional bricks and Ordinary Portland Cement (OPC). The aim of this study was to examine the effect of microplastic (SPM) addition on the mechanical characteristics of geopolymer brick developed from gold mine tailing (ALE). Leaching test was also performed on geopolymer brick in order to investigate the release of certain heavy metals as a result of using these wastes. Geopolymer brick samples were made from ALE (precursor) and SPM as an additive material in a high alkaline medium (alkali activator). Three sets of BGP samples were produced comprised 100% ALE with 0% SPM (SPM0), 95% ALE with 5% SPM (SPM5) and 90% ALE with 10% SPM (SPM10). Based on the XRD analysis, ALE composed primarily of silicon dioxide, SiO2 (68.4%) and aluminium dioxide Al2O3 (17.7%) which are the main elements needed for development of geopolymer bricks. The result of linear shrinkage analysist found that the volume of the BGP samples decreased as SPM increased, with the maximum shrinkage value for SPM0 of 9.35% and continuing to decrease to 7.18% and 5.59% for SPM5 and SPM10. The water absorption value increased with increasing of SPM content, from 1.16% (SPM0) to 4.57% (SPM5) and 4.92% (SPM10). This is a result of the presence of a gap boundary between the SPM particles and the geopolymer substance. The obtained water absorption value satisfies the Class A (4.5%) and Class B (7.0%) engineering brick criteria. The compressive strength value decreased with increasing SPM content, ranging between 10.17 MPa and 38.50 MPa. The strength range observed exceeds the MS 76:1972 recommended value (2.8 MPa - 5.2 MPa). Leaching test showed that heavy metals produced by BGP bricks were still below USEPA requirements. The acid resistance test of the BGP sample was found to be lower (30.32%) than mortar (39.0%) and conventional Portland cement (56.6%). This study demonstrated that ALE waste has the potential to be used as an alternative material in the development of geopolymer bricks; however, some mechanical factors, such as the amount and type of microplastic waste, as well as acid resistance, must be further optimized.

 

Keywords: Brick; compressive strength; geopolymer; micro plastic waste; water absorption

 

REFERENCES

Abdul Kadir, A. & Mohajerani, A. 2008. Physico-mechanical properties and leachate analysis of clay fired bricks incorporated with cigarette butts. Proceedings of the International Conference on Environment, Penang, Malaysia. hlm. 15-17.

Abidi Ramly. 2007. Kekuatan mampatan dan kebolehserapan bata tanpa bakar. Tesis Ijazah Sarjana Muda. Fakulti Kejuruteraan Awam, Universiti Teknologi Malaysia (tidak diterbitkan).

Adajar, M.A., Beltran, H.E., Calicdan, C.A., Duran, T.R., Ramos, C.D. & Galupino, J. 2021. Assessment of gold mine tailings as based geopolymer binder in concrete. DLSU Research Congress 2021, De La Salle University, Manila, July 7-9, 2021.

Adler, R. & Rascher, J. 2007. A Strategy for the Management of Acid Mine Drainage from Gold Mines in Gauteng. CSIR Report No. CSIR/NRE/PW/ER/2007/0053/C. Pretoria: CSIR. 

Ahmari, S. & Zhang, L. 2013. Durability and leaching behavior of mine tailings-based geopolymer bricks. Construction and Building Materials 44: 743-750. http://doi.org/10.1016/j.conbuildmat.2013.03.075

Ahmari, S. & Zhang, L. 2012. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials 29: 323-331. doi:10.1016/j.conbuildmat.2011.10.048

Ajam, L., Ben Ouezdou, M., Felfoul, H.S. & Mensi, R.E. 2009. Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Construction and Building Materials 23(10): 3240-3247. https://doi.org/10.1016/j.conbuildmat.2009.05.009

Akabzaa, T.M. 2000. Boom and Dislocation: The Environmental and Social Impacts of Mining in the Wassa West District of Ghana. Third World Network-Africa.

Ali Rahman, Z., Nazarah, H., Idris, W.M.R. & Lihan, T. 2023. Mechanical characteristics of developed brick from drinking water sludge under different firing temperatures and rice husk ash contents. Sains Malaysiana 52(7): 2115-2126. http://doi.org/10.17576/jsm-2023-5207-17

Ali Rahman, Z., Mohd Suhaimi, A.S., Idris, W.M.R. & Lihan, T. 2022. Developing and mechanical properties of low fired and geopolymer bricks from drinking water sludge with different contents of added fly ash. Sains Malaysiana 51(12): 4071-4085.

Ali Rahman, Z., Othman, A.M., Idris, W.M.R. & Lihan, T. 2021. Kesan suhu dan bahan tambah abu terbang terhadap pencirian mekanik bata daripada sisa rawatan air mentah. Sains Malaysiana 50(6): 1563-1575. http://doi.org/10.17576/jsm-2021-5006-05

Aragaw, T.A. 2021. Microplastic pollution in African countries’ water systems: A review on findings, applied methods, characteristics, impacts, and managements. SN Appl. Sci. 3: 629. doi:10.1007/s42452-021-04619-z

Aseniero, J.P.J., Opiso, E.M., Banda, M.H.T. & Tabelin, C.B. 2018. Potential utilization of artisanal gold‑mine tailings as geopolymeric source material: Preliminary investigation. SN Applied Sciences 1: 35. doi.org/10.1007/s42452-018-0045-4

Asoy, A.N., Besagas, R.L., Del Rosario, R.M. & Dael, N.T. 2017. Physico-chemical characteristics of tailings from Gango gold mine. J. Chem. Bio. Phy. Sci. Sec. D 7(2): 201-207.

Benahsina, A., El Haloui, Y., Taha, Y., Elomari, M. & Bennouna, M.A. 2022. Substitution of natural clay by Moroccan solid mining wastes to manufacture fired bricks. Materials Today: Proceedings 58: 1324-1330.

Benson, C.H., Zhai, H. & Wang, X. 1994. Estimating hydraulic conductivity of compacted clay liners. Journal of Geotechnical Engineering 120(2): 366-387. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(366)

Bhuyan, M.S. 2022. Effects of microplastic on fish and in human health. Frontier in Environmental Science 10: 827289. doi: 10.3389/fenvs.2022.827289

Blight, G. & Fourie, A. 2005. Catastrophe revisited-disastrous flow failures of mine and municipal solid waste. Geotech. Geol. Eng. 23: 219-248. doi: 10.1007/s10706-004-7067-y

British Standard (BS). 1990. 1377-2. Methods of Test for Soils for Civil Engineering Purposes. Classification Tests. London: British Standard.

Caballero, E., Sӑnchez, W. & Ríos, C.A. 2014. Synthesis of geopolymers from alkaline activation of gold mining wastes. Ingeniería y competitividad 16(1): 317-330.

Carter, D., Mortland, M. & Kemper, W. 1986. Specific surface. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5: 413-423.

Castillo, H., Collado, H., Droguett, T., Sánchez, S., Vesely, M., Garrido, P. & Palma, S. 2021. Factors affecting the compressive strength of geopolymers: A review. Minerals 11(12): 1317.

Chan, C.M. 2023. BET Physisorption Analyzer Installation Operational Training: Micromeritics Tristar II Plus, Micromeritics.

Chen, M-Z., Lin, J-T., Wu, S-P. & Liu, C-H. 2011. Utilization of recycled brick powder as alternative filler in asphalt mixture. Construction and Building Materials 25(4): 1532-1536.

Davidovits, J. 2015. Polymers and geopolymers. Geopolymer Chemistry and Applications. 4th ed. Saint Quentin: Institut Géopolymère.

Deng, K., Yin, P., Liu, X., Tang, Q. & Qu, R. 2014. Modeling analysis and optimization of adsorption parameters of Au(III) using low-cost agricultural residual buckwheat hulls. J. Ind. Eng. Chem. 20(4): 2428-2438. http://refhub.elsevier.com/S0950-0618(21)00415-3/h0010

Doğan-Sağlamtimur, N., Bilgil, A. & Öztürk, B. 2018. Reusability of ashes for the building sector to strengthen the sustainability of waste management. Dlm. Handbook of Research on Supply Chain Management for Sustainable Development, disunting oleh  Akküçük, U. IGI Global Publishing. hlm. 265-281.

Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. & Van Deventer, J.S. 2007. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 292(1): 8-20.

Falayi, T. 2019. Effect of potassium silicate and aluminate on the stabilisation of gold mine tailings. Proceedings of the Institution of Civil Engineers - Waste and Resource Management 172(2): 56-63.

Fashola, M.O., Ngole-Jeme, V.M. & Bablola, O.O. 2016. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International J. Environmental Research and Public Health 13(11): 1047.  https://doi.org/10.3390%2Fijerph13111047

Fungaro, D.A. & da Silva Reis, T.V. 2014. Use of sugarcane straw ash for zeolite synthesis. International Journal of Energy and Environment 5(5): 559-566.

Gado, R.A., Hebda, M., Lach, M. & Mikula, J. 2020. Alkali activation of waste clay bricks: Influence of the silica modulus, SiO2/Na2O, H2O/Na2O molar ratio, and liquid/soilid ratio. Materials 13: 383. https://doi10.3390/ma13020383

Gui, Y., Zhang, Q., Qin, X. & Wang, J. 2021. Influence of organic matter content on engineering properties of clays. Advances in Civil Engineering 2021: 1-11.

Idrees, M., Akhbar, A., Saeed, F., Gull, M. & Eldin, S.M. 2023. Sustainable production of low-shrinkage fired clay bricks by utilizing waste plastic dust. Alexandria Engineering Journal 69: 405-416. https://doi.org/10.1016/j.aej.2023.01.040

Ince, C. 2019. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cypru. Journal of Cleaner Production 238: 117871. https://doi.org/10.1016/j.jclepro.2019.117871

Indian Standard (IS). 1992. IS 1077:1992. Common Burnt Clay Building Bricks-Specifications. New Delhi: BIS:1992 [Fifth Revision]

Jabatan Perangkaan Malaysia 2022. Indeks kos bahan binaan meningkat di antara 4.4 peratus dan 18.5 peratus pada Jun 2022. Berita Harian online. https://beritaharian.my/indeks-kos-bahan-binaan-meningkat-di-antara-4-4-peratus-dan-18-5-peratus-pada-jun-2022/

Kementerian Air dan Sumber Asli 2021. Malaysia Plastics Sustainability Roadmap 2021-2030. Putrajaya: Ministry of Environment & Water (KASA).

Khale, D. & Chaudhary, R. 2007. Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science 42(3): 729-746.

Leong, H.Y., Ong, D.E.L., Sanjayan, J.G. & Ali Nazari. 2016. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Construct. Build. Mater. 106: 500-511.

Loaiza, J.V., Franco, J.A., Vargas, L.S., Gongora, G.A. & Dianderas, A.P.F. 2020. Design and implementation of an alternative process for the manufacture of bricks from gold mine tailings. Ingeniare. Revista Chilena De Ingeniería 28(2): 268-276.

Lottermoser, B.G. 2010. Mine Wastes: Characterization, Treatment and Environmental Impacts. Berlin: Springer. https://doi.org/10.1007/978-3-642-12419-8

Lu, Y., Li, G., Liu, W., Yuan, H. & Xiao, D. 2018. The application of microwave digestion in decomposing some refractory ore sample with solid fusion agent. Talanta 186: 538-544. http://refhub.elsevier.com/S0950-0618(21)00415-3/h0010

Lu, Z. & Cai, M. 2012. Disposal methods on solid wastes from mines in transition from open-pit to underground mining. Procedia Environmental Sciences 16: 715-721.

Mabroum, S., Moukannaa, S., Machi, A.E., Taha, Y., Benzaazouna, M. & Hakkou, R. 2021. Mine wastes based geopolymers: A critical review. Cleaner Engineering and Technology 1: 100014.

Malaysian Standard (MS). 76. 1972. Specification for Bricks and Blocks of Fired Brick Earth, Clay or Shale (Selangor: Malaysian Standard). hlm. 1-74.

Mashifana, T., Sithole, N. & Mkhonto, E. 2019. Stabilization of gold mine tailings: The effect of hydrated lime on the unconfined compressive strength. IOP Conference Series: Materials Science and Engineering. hlm. 012045.

Nehdi, M. & Tariq, A. 2007. Stabilization of sulphidic mine tailings for prevention of metal release and acid drainage using cementitious materials: A review. Journal of Environ. Eng. Sci. 6: 423-436.

Ngo, S.H. 2020. Evaluation of the engineering properties of fly ash-based geopolymer bricks. International Journal of Civil Engineering and Technology 11(2): 43-51.

Oades, J.M. 1984. Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil 76: 319-337.

Özbayrak, A., Kucukgoncu, H., Aslanbay, H.H., Aslanbay, Y.G. & Atas, O. 2023. Comprehensive experimental analysis of the effects of elevated temperatures in geopolymer concretes with variable alkali activator ratios. J. Build. Eng. 68: 106108.

Pan, Z., Zhang, C., Li, Y. & Yang, C. 2022. Solidification/stabilization of gold ore tailings powder using sustainable waste-based composite geopolymer. Engineering Geology 309: 106793.

Parthasarathi, N., Ramalinga Reddy, B.M. & Satyanarayan, K.S. 2016. Effect on workability of concrete due to partial replacement of natural sand with gold mine tailing. Indian Journal of Science & Technology 9(35): 1-4.  https://doi.org/10.17485/ijst/2016/v9i35/99052

PlasticsEurope. 2019. Plastics e the Facts 2019. https://www. plasticseurope.org/en/resources/publications/1804-plastics-facts-2019

Rao, F. & Liu, Q. 2015. Geopolymerization and its potential application in mine tailings consolidation: A review. An International Journal 36(6): 399-409. doi:10.1080/08827508.2015.1055625

Rassam, D.W. & Williams, D.J. 1999. Engineering properties of gold tailings. International Journal of Surface Mining, Reclamation and Environment 13(3): 91-96.

Raut, S., Ralegaonkar, R. & Mandavgane, S. 2011. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Construction and Building Materials 25(10): 4037-4042.

Raza Ali Khan, Mohd Shahir Liew & Zulkipli Ghazali. 2014. Malaysian construction sector and Malaysia vision 2020: Developed nation status. Procedia - Social and Behavioral Sciences 109: 507-513.

Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. 2013. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Massachusetts: Academic Press.

Roy, S., Adhikari & Gupta, R.M. 2007. Use of gold mill tailing in making bricks: A feasibility study. Waste Management Research 25: 474-482.

Suhendro, B. 2014. Toward green concrete for better sustainable environment. Procedia Engineering 95: 305-320.

Tian, X., Xu, W., Song, S., Rao, F. & Xia, L. 2020. Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers. Chemosphere 253: 126754. https://doi.org/10.1016/j.chemosphere.2020.126754

Townsend, T.G., Solo-Gabriele, H., Tolaymat, T. & Stook, K. 2003. Impact of chromated copper arsenate (CCA) in wood mulch. Science of The Total Environment 309(1-3): 173-185.

US Environmental Protection Agency (USEPA). 1996. Hazardous Waste Characteristics Scoping Study. US Environmental Protection Agency.

Uvarajan, T., Paran Gani, Ng, C. C. & Nur Hanis Zulkernain. 2021. Reusing plastic waste in the production of bricks and paving blocks: A review. European Journal of Environmental and Civil Engineering 1-34.

Verma, N.K., Rao, M.C. & Kumar, S. 2022. Effect of curing regime on compressive strength of geopolymer concrete. IOP Conf. Series: Earth and Environmental Science 982: 012032. https://doi.org/10.1088/1755-1315/982/1/012031

Wei, Z., Zhao, J., Wang, W., Yang, Y., Zhuang, S., Lu, T. & Hou, Z. 2021. Utilizing gold mine tailings to produce sintered bricks. Construction and Building Materials 282: 122655.

Widojoko, L., Hardjasaputra, H. & Susilowati. 2014. Study of gold mine tailings utilization as fine aggregate material for producing shotcrete based on concept of green technology. 3rd International Conference of Engineering & Technology Development (ICETD), Faculty of Computer Science, Bandar Lampung University.

Xie, J. & Kayali, O. 2014. Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature. Constr. Build. Mater. 67: 20-28.

Yadav, A., Chandra, A. & Singh, S. 2022. Study on application of waste plastic in the construction industry. Materials Today: Proceedings 64: 1455-1458.

Yang, C., Cui, C., Qin, J. & Cui, X. 2014. Characteristics of the fired bricks with low-silicon iron tailings. Construction and Building Materials 70: 36-42. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.075

Yao, X., Zhang, Z., Zhu, H. & Chen, Y. 2009. Geopolymerization process of alkali– metakaolinite characterized by isothermal calorimetry. Thermochimica Acta 493(1): 49-54.

Yener, E. & Karaaslan, C. 2020. Curing time and temperature effect on the resistance to wet-dry cycles of fly ash added pumice based geopolymer. Cement Based Composites 1(2): 19-25.

Yunsheng, Z., Wei, S., Qianli, C. & Lin, C. 2007. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials 143(1-2): 206-213.

 

*Corresponding author; email: zarah1970@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next